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Abstract. In this paper, we introduce PageKnocker, a deception-based
supplementary authentication mechanism, aimed primarily at protecting the
public-facing authentication endpoints of critical web applications. Page-
Knocker is inspired by the network security concept of port knocking, and
uses the requests to the web application as a means of authentication for the lo-
gin page. Specifically, the authentication is successful (i.e. the user gets to access
the login page of a web application), if the user’s request sequence matches their
personal predefined request sequence. In this manner, PageKnocker offers web
application administrators the comparative advantage of knowing the nature
of a visitor even before that visitor sends the first set of credentials. Alongside
PageKnocker, we introduce two deceptive login environments, one overtly
deceptive and one clandestine, towards which we direct any unauthenticated
user attempting to reach the real login page. To evaluate the security and
usability of page knocks, we deploy PageKnocker-protected honeypots in the
wild and perform a separate user study, showing that PageKnocker can resist
tens of thousands of brute-forcing bots, while remaining usable and intuitive.

1 Introduction

Following the increasing popularity of interactive web services over the last two decades,
reliance on web applications for everyday tasks has become common place. Whether
it be email services, e-commerce, online learning, news outlets, or social media, web
applications have permeated almost every aspect of the online experience. As a result,
web applications have become primary targets for malicious actors, whose objectives
span a wide array, ranging from violations in confidentiality and data privacy to larger
scale operational disruptions.

The main and first line of defense of web applications is credential-based authentication.
In order to accommodate users, web applications provide login pages, where users are
asked to provide their usernames and passwords. These public-facing login endpoints
are of critical importance since they are the entry points to sensitive and private parts of
the web application. Apart from implementation-based security vulnerabilities [1], login
pages as public-facing endpoints are inherently unprotected, since anyone can access the
login page and attempt to bypass the authentication. Particularly for the authentication
endpoints intended for a web application’s administrator, there is no reason for them
to be accessible (and therefore targetable) by all visitors of that web application.
With the weaknesses of credential-based authentication being well-documented

(including users choosing low-quality passwords and reusing them across different
websites [2,3,4]), alternative and/or supplementary authentication schemes have been
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proposed and adopted. Although such supplementary authentication techniques tend
to improve certain usability and security aspects of web authentication, they have not
managed to sufficiently and effectively address the issues surrounding passwords [5,6,7,8].
Thus, credential-based authentication still remains the primary, and oftentimes, sole
means of authentication for the majority of web applications.

This combination of easily-accessible authentication endpoints and weak or reused
passwords has been abused extensively by credential stuffing bots, with estimates as high
as one in five of all authentication requests coming from malicious automated systems [9].
In credential stuffing attacks, attackers obtain username, password pairs from third-party
sources (most commonly products of breaches [10]) and employ bots to test these
credentials by injecting them in the respective fields of a web application’s login page.
Given the elevated privileges of administrators, it follows that administrator accounts
are very often primary targets in such campaings [11], with examples such as the Uber
2016 data breach that lead to over 57M personal details of Uber users being leaked after
a credential stuffing attack targeted the company’s administrators and developers [12].

Recognizing the unprotected nature of public-facing login endpoints, and considering
the extent of bot-driven credential stuffing attacks against administrator accounts, in
this paper, we introduce PageKnocker, a novel deception-based supplementary au-
thentication mechanism on top of passwords, which protects public-facing authentication
endpoints. The authentication scheme of PageKnocker is based on request sequences,
meaning that a user is granted access to the login page by making a predefined user-
specific sequence of requests to the web application. For example, in order to access the
https://example.com/admin authentication endpoint, PageKnocker enforces that
a user must first request https://example.com/about followed by https://example.
com/categories/ and https://example.com/news, all of which are preexisting pages
on the protected web application, which are turned into page-knocking sequences.

PageKnocker is inspired by the widely known network security concept of port
knocking [13]. By employing PageKnocker, we capitalize on the familiarity of
administrators with the web application - specifically with its User Interface (UI) - and
we manage to effectively protect public-facing login pages, while allowing for a usable
system that requires no special software or hardware. Furthermore, PageKnocker
works as a gateway to deception, by introducing a deceptive layer to the authentication,
enabling effective active defenses and attacker behavior analysis, all while protecting
exposed endpoints of the web application. This paper makes the following original
contributions:

– We introduce PageKnocker, a novel application-agnostic deception-based au-
thentication mechanism based on request sequences, aimed at limiting access to
web-application authentication endpoints.

– We implement PageKnocker using two different deceptive techniques related to
what attackers see when trying to illicitly access a protected endpoint.

– We evaluate PageKnocker using both honeypots in the wild (collecting over a
million requests from over 21,000 distinct IP addresses) as well as through a user
study with security experts as participants.

To inspire additional research in the area of deception-based defenses, the source code
along with a video demo of PageKnocker are available at https://pageknocker.
github.io/.

https://example.com/admin
https://example.com/about
https://example.com/categories/
https://example.com/categories/
https://example.com/news
https://pageknocker.github.io/
https://pageknocker.github.io/
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Fig. 1: Successful (left) and unsuccessful
(right) port knocking completion on arbi-
trary port knocking sequence {23,38,37}.
Numbered square represent the system
ports, while numbers on the upper-right
edges of the squares represent the order
of the knocks.
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Fig. 2: Successful (top) and unsuccessful
(bottom) page knock completion on abstract
webpage example. Green contours represent
correct knocks, while red ones represent
incorrect ones.

2 Background

PageKnocker draws inspiration from the network-security concept of “port knock-
ing” [13]. Port knocking is employed as an additional authentication method, to allow
only authorized clients to reach a specific network port of a remote server. Namely,
port knocking allows access to a client only if it has sent packets to a secret predefined
sequence of ports of the server.
Taking the SSH daemon as an example, TCP port 22 is by default closed to all

connecting clients on a server employing the port-knocking mechanism. If a client sends
a sequence of packets to other ports on that server in the correct order, that client is
considered authorized and will now be able to connect to the SSH daemon listening on
port 22 (that port remains closed for everyone else except that specific client). Figure 1
shows a high-level visual representation of the port-knocking concept in action. For
an arbitrary port knocking sequence consisting of the ordered set of ports {23,38,37},
a client is authenticated if they send packets to port 23, then to port 38, and finally
to port 37. The left part of Figure 1 represents a successful port knocking attempt,
while the right part depicts a failed authentication attempt. Once a client successfully
completes the port-knocking authentication, it can now establish a connection to that
network service and proceed with traditional password-based/key-based authentication.
In the system described in this paper, we employ the same logic where users are

allowed to reach the public-facing login page of the web application, only if they have
previously visited the correct URLs of the web application in the correct order. We
underline that, while PageKnocker is inspired by the concept of port knocking, the
two are completely different in design and implementation, primarily due to being
active at different layers of the OSI model (application layer vs. transport layer).
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3 Design

PageKnocker is a supplementary authentication mechanism on top of passwords
that protects the public-facing login page of critical web applications. It operates by
evaluating a sequence of requests to the web application against predefined user-specific
sequences of requests. The user chooses their own page knocking sequence, in the same
manner that they would choose their passwords, and they are allowed to reach the
login page of the web application, only if they recreate that sequence.

3.1 Page Knocks

We define a page knock as a sequence of GET requests to the web application. These re-
quests can be arbitrary but they work best when they are on contiguous (i.e. sequentially
reachable) pages, so that users can conveniently navigate through them. To authenticate,
the user needs to make a specific series of requests to the web application in a particular
order. If this request sequence matches the user’s predefined page knocking sequence,
they are allowed to proceed (e.g. be allowed to access the web application’s login form).
If web clients try to visit the PageKnocker-protected authentication endpoint before
finishing their page knock, PageKnocker can either deny them access, or engage
them in cyber deception.
In the context of page knocks, matching a user’s request sequence to a predefined

page knock refers to finding a subset of the user’s requests, which includes the predefined
knocks in the correct order. For example, provided a predefined page knocking sequence:
(A2,A5,A17) where Ai represent pages of the web application, for i=1,...,n, with n
being the total number of available pre-authentication pages of the web application,
(A1,A3,A2,A5,A17,A2) is a correct match, while (A2,A1,A5,A17) is not. Putting page-
contiguity aside, the possible combinations of a page knocking sequence of length N is nN .

In this manner, a PageKnocker-protected web application is able to distinguish
between legitimate users and attackers even before they reach the web application’s
login form. Thus, PageKnocker allows us to adjust our defenses based on a priori
information and effectively protect the main authentication of the web application. Fig. 2
shows a visual representation of how users interact with a PageKnocker-protected
web application in the context of a three-page knock. The length and specific pages of a
knocking sequence can be selected in any manner of way, e.g., capturing the actions that
a user already performs when they visit a webpage before they attempt to authenticate.

Since the strength of a page-knocking sequence is tied to the number of contiguous,
pre-authentication pages that are available to users, we evaluate the number of such
pages on different types of popular web applications. Using the Tranco dataset [14], we
collect all the pages of the most popular websites which make their sitemap available
and categorize them based on their target industry. Since page knocks are made up of
contiguous pages, we divide the collected pages by path depth, i.e. example.com/foo has
a depth of one, example.com/foo/bar has a depth of two, etc. We present the number
of pages per path depth of the website categories along with their average in Fig. 3. We
observe that on average, websites contain upwards of 1,000 webpages for a path depth
between two and four. This demonstrates that there is a significant number of webpages
that may be employed as parts of a page knock sequence. Moreover, considering the
pages of other path depths as well, we confirm the substantial number of possible page
knocking sequence combinations for all website categories.
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Fig. 3: URL Path Depth for Different Website Categories

3.2 Applicability and Deception Strategies

PageKnocker’s primary objective is to protect the public-facing login page of web
applications by introducing an additional layer of authentication to the login endpoint
that is invisible to web clients. Protecting the login page is of critical importance, since
the vast majority of login pages are public-facing and accessible by anyone, leaving
them entirely unprotected against brute force and credential stuffing attacks. Table 4
of the Appendix lists the predefined login page paths for administrators and backend
users for the top ten Content Management System (CMS) based on their market share.
We observe that for the vast majority of CMS applications (over 70% of the market
share), the publicly available predefined login page paths allow anyone to reach a web
application’s sensitive login form by merely requesting a well-known path.

PageKnocker allows web applications to differentiate between legitimate users
who are attempting to login vs. attackers who have stolen credentials or are about to
start brute-forcing their way into the application. Given an incomplete pageknock, web
applications can deny access to the login form, request more information in the form of
Multi-Factor Authentication (MFA) and the solving of CAPTCHAs, or engage users
in deception. In this paper, we focus on the last approach by implementing support
for completely hiding a login form (i.e. giving users an HTTP 404 error) or allowing
them to reach a login form but always denying them access, even if attackers provide
correct credentials. The former strategy can be used to confuse attackers about the
nature of the web application (in relation to Table 4 of the Appendix), whereas the
latter keeps them engaged in order to study their authentication attempts and protect
other systems from attacks.

3.3 Threat Model

PageKnocker can protect all publicly-accessible authentication endpoints from
attackers launching brute-force attempts or operating with stolen credentials. While all
authentication endpoints are in scope for PageKnocker, it is best suited to protect
endpoints which are intended to be used by a small number of administrators and are
the ones primarily targeted by web bots [11].

Even though PageKnocker is situated at the server side and therefore completely
invisible to benign and malicious clients, we operate under the assumption that an
attacker may have knowledge of the existence of page knocks, but no knowledge of
the specific sequences chosen by users.
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3.4 Security Properties

Here, we briefly describe a number of non-obvious security properties of PageKnocker
that differentiate it from existing authentication countermeasures.
– No special software/hardware necessary. PageKnocker does not require

any special software or hardware. The organic clicks on a web application’s UI are
converted into page knocks and used to protect authentication endpoints.

– Resistant to shoulder surfing. A user’s page knocks on a PageKnocker-
protected web application are indistinguishable from regular browsing. As such,
PageKnocker increases the complexity of a shoulder-surfing attack, which now
necessitates both the correct page knocks, as well as the credentials.

– Invisible toMITM. Unlike traditional port knocking, page knocking happens at the
application layer and inherits all the confidentiality and integrity guarantees of TLS.

– Gateway into deception. PageKnocker can be employed alongside other
technologies and, even before attackers send their first authentication attempt,
transparently engage them in deception, i.e., route their traffic to different servers,
serve them content containing honeytokens, etc.

– Disincentivizing credential reuse. Since PageKnocker turns a web applica-
tion’s own UI into a means of authentication, it makes it difficult for users to reuse
credentials across unrelated websites (e.g. users cannot use the same page-knocking
sequence for a blog and an online bank, even if they choose the same password).

– Compatible with existing authentication mechanisms. Along with protect-
ing the login page of a web application, PageKnocker can be used in parallel with
existing supplementary authentication mechanisms, such as MFA and Single Sign-On
(SSO), thus enhancing the application’s overall security stance.

4 Implementation

In terms of PageKnocker’s implementation, our objective is for the system to be
lightweight, application-agnostic, and capable of resisting real attackers, without being
cumbersome for benign users.

4.1 Overview

Below, we outline the main functionality of the proposed framework, along with the
main components that address these functions.
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Containerization PageKnocker employs Docker containers for every component of
its architecture, allowing us to easily interchange parts of the system, without disrupting
the remaining components.
Server-side request manipulation Given that our system needs be able to monitor
and manipulate requests and responses to the web application, we employ mitmproxy [15].
We place the mitmproxy in front of the web application, allowing us to intercept,
inspect, and manage the HTTP requests to the application server, and manipulate
the HTTP responses that the web application sends to the user.
Reverse Proxy We employ an Nginx reverse proxy, to manage the TLS certificate
of the web application’s domain, handle TLS termination, and forward the traffic to
the mitmproxy and web application docker containers. This reverse proxy is placed
between the client and the dockerized containers of the web application.

4.2 Request-Response Flow

Fig. 4 shows PageKnocker’s architecture, along with the request and response flows.
Below, we elaborate on each step of these flows.
User Request - Reverse Proxy 1 . A client request to the web application is first
delivered to the Nginx reverse proxy. The reverse proxy handles the TLS termination
and forwards the request’s URI to the host of the web application. It is the reverse
proxy that manages the domain redirection and manages the TLS certificates.
Server-side Request Manipulation 2 . After the TLS termination of the Nginx
reverse proxy, the request reaches mitmproxy. Regarding the received requests, we use
mitmproxy in two ways. First, we log the incoming request, along with the IP address
of the client, the cookie for our web application, and the request method, path, and
timestamp. We then evaluate whether it is a login request by comparing the request’s
endpoint with the known authentication path of the protected web application (popular
endpoints shown in Table 4 of Appendix). This is a configuration option that must be
provided the first time PageKnocker is deployed to protect a web application. Non-
login requests are ignored by PageKnocker, whereas login ones are processed according
to the next steps. We note that the entirety of the pageknock-authentication procedure
takes place in the mitmproxy module, before a request reaches the web application.
PageKnocker and Login Environments 3 . Having established that a visitor is
requesting access to the web application’s login page, we evaluate whether they have
completed their page knocking sequence. PageKnocker consults the logs that it
collects for each request made to the web application, identifying each visitor by existing
web-application cookies or by IP address, depending on the deployment configuration.
We then associate to each user the requests that they make to the web application
sorted by their timestamps. Thus, we have time-ordered request sequences for all visitors
to the web application, and we can evaluate if a user has managed to successfully
complete the predefined page knock. We only authenticate users whose page knocks
were matched against their predefined knocking sequence within a configurable window
of time (set to 10 minutes for our prototype). This means that a correct page knock is
only valid for a short period of time, and needs to be repeated after this time expires.
Dealing with page knock violations. Given that PageKnocker’s authentication
scheme provides information on the nature of the user before they reach the login
page, we are able to adjust the response of the system. In this context, we develop
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two different deception-based login environments, which are triggered by a failed page
knock authentication; a Failed Authentication (FA), and an HTTP 404 environment. A
user that has failed the page knocking authentication, is redirected to one of these two
environments, depending on the deployment configuration, upon requesting to access
the actual login page.
Failed Authentication 4 . The Failed Authentication (FA) login environment looks
exactly like the real login page of the web application. The deceptive element of this
environment lies in the functionality of the main authentication. In particular, we
circumvent the credential (username/password) authentication of the web application
using mitmproxy, and we deny access to the user, whatever credentials they may provide;
even correct ones. Specifically, this is achieved by manipulating the web application
response, when the predefined page knocking sequence has not been matched. An
attacker that has failed to complete the predefined page knocks, is directed to a page that
is a clone of the authentic login page 4.1 , mimicking the wrong-credentials error message
of the protected web application, regardless of which credentials the attacker uses 4.2 .
Attackers who are unaware of PageKnocker will eventually conclude that the
stolen credentials were not valid (even if they really were) against the protected web
application and stop attacking. Sophisticated attackers who are certain about the
validity of their credentials may eventually infer the presence of a PageKnocker-like
defense system leaving them with unclear next steps. An attacker who keeps engaging
with a PageKnocker-protected web application risks getting studied, fingerprinted,
and potentially engaged in additional deception.
Page Not Found (HTTP 404) 5 . When attackers who have not completed the
predefined page knocks request the login page, PageKnocker responds with a
HTTP 404 page. The goal of this deceptive strategy of PageKnocker is to confuse
attackers regarding the nature of the attacked web application. Bots that engage in
fingerprinting to identify the nature of a web application (so that they can attack
the right authentication endpoint) may conclude that the fingerprinting was faulty
and move to another target. We report on the behavior of bots when encountering
a PageKnocker-protected web application in Section 5. As before, sophisticated
attackers attacking a specific target may again conclude that the web application is
protected by PageKnocker and is therefore engaging them in deception. Attackers
who choose to keep attacking the target, do so knowing that all information that they
have discovered regarding that web application may be part of a deception strategy
aimed at studying them and keeping them engaged.
Login Page 6 . The FA and 404 login environments are triggered by a request to
the login page from a user who has not completed the predefined page knocks. A
user that has completed the predefined page knocks is authenticated, as per the page
knocks, and is therefore allowed to access the true login page and the true password-
authentication component of the protected web application 7 , without any further
interventions/content modifications by PageKnocker.

5 Security Evaluation

In this section, we report on a three-month long experiment where we deployed
PageKnocker-protected web applications on the public web, to understand how bots
interact with them. In the next section (Section 6) we present a separate user study
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Table 1: Requests received in the wild (2 honeypots per page-knock length)
Page Knock Total GET [%] POST [%]Length

Short 138,919 17.19 82.15
387,749 59.15 40.71

Medium 133,886 19.00 80.61
128,826 42.32 57.28

Long 129,963 39.50 60.09
128,443 19.78 79.79

Overall 1,047,786 32.82 66.77

(a) Requests to the six FA honeypots

Page Knock Total GET [%] POST [%]Length

Short 21,387 94.07 4.52
21,823 96.54 1.99

Medium 27,712 97.37 1.46
17,028 94.52 2.55

Long 22,390 93.84 4.75
17,918 94.90 2.14

Overall 128,258 95.21 2.90

(b) Requests to the six 404 honeypots

simulating both sophisticated attackers with knowledge of PageKnocker’s presence,
as well as characterizing the usability of our system.

To evaluate our approach against bot attacks, we deployed 12 WordPress honeypots
secured by PageKnocker using different page knock pages and knock lengths. Half of
the honeypots engaged attackers in failed-authentication (FA) deception (all credentials
attempted by non PageKnocker-authenticated users are always wrong) and the other
half presented unauthenticated attackers with our 404 (Page Not Found) approach.

For the six FA deployments, we specify two with a page knocking sequence of a single
request (which we will refer to as “short” page-knock length), two with a sequence
of three requests (“medium”), and two with a sequence of five requests (“long”). We
establish page-knocking sequences of the same lengths for the six 404 honeypots. Lastly,
we note that every predefined page knocking request sequence was unique among all
of the aforementioned deployed honeypots.

5.1 Experimental Setup

All 12 versions of the page-knocking-adapted web applications were deployed on the
public web for a period of 90 days on newly registered domain names. We associate
each request sent to PageKnocker with the IP address of the web client. The page
knocking authentication is therefore carried out by identifying the page knocks that
each individual IP address makes to the web application. To ensure that our honeypots
are comparable to real-world deployed web applications we used Let’s Encrypt [16]
to obtain valid TLS certificates for all of them. An additional advantage of using TLS
certificates is that, in addition to IP-address-scanning web bots, the announcement of our
certificates on Certificate Transparency (CT) [17] is also likely to attract CT bots [18].

5.2 Results

In the span of three months, our deployed honeypots received 1,176,044 requests from
21,935 unique IP addresses, with 1,047,786 (89.09%) and 128,258 (10.91%) requests
made to the FA and the 404 honeypots, respectively. Specifically towards authentication
endpoints, the deployed honeypots received a total of 790,541 requests (67.22 % of
all requests), with 761,909 (96.38%) requests towards the FA honeypots, while only
28,632 (3.62%) directed towards 404 honeypots. Regarding the effective security of
PageKnocker, out of the total of 21,935 unique IP addresses, we observe only two
cases of correct page-knock guesses (0.0091%).
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Fig. 5: Distribution of GET and POST requests in FA and 404 honeypots in the wild

Overall, across all deployed honeypots, we observed large discrepancies in the number
of received requests between FA and 404 configurations. In order to examine these
divergences, we evaluate the received requests with respect to their GET and POST
distributions.
PageKnocker Authentication Robustness Regarding the two correctly guessed
page knocking sequences, in both cases, the traffic was directed towards a honeypot with
a predefined page knock sequence of a single request (the easiest possible scenario). These
originated from two different IP addresses, namely 34.76.104.x and 34.140.32.x which sent
requests to just one of our 12 honeypots exhibiting clear web-scanning behavior. They
both initially made a request for a robots.txt file, and subsequently proceeded to con-
secutively request front end pages of the web application. Both were eventually redirected
by the web application to the login form, when attempting to access privileged content.
The fact that they managed to clear the single request page knock was due to pure chance,
since they managed to knock on the correct path before landing on the login form.

Given the rarity of this event and the fact that a single request page knock represents
the least secure scenario that we evaluate, we consider these cases to be statistically
insignificant (two cases out of 21,935 unique IPs, which is 0.0091%). We can therefore
conclude that PageKnocker successfully protected the deployed web applications
from almost 800K illicit accesses.
GET and POST Requests Tables 1a and 1b show the GET and POST requests to
the FA and 404 honeypots respectively. On both tables, we present the requests sent to
each honeypot, along with the predefined page knocking sequence length associated with
each deployed honeypot. By observing the distribution of GET and POST requests, it
becomes apparent that the POST requests are significantly fewer for the 404 honeypots.
This is due to the fact that the FA login environment allows the unauthenticated
user to access and interact with the login page where bots can keep trying credentials
(submitted via POST requests) and keep getting wrong-credentials errors. Contrastingly,
in our 404 honeypots, PageKnocker makes the login page unavailable so that the vast
majority of bots stop their scanning attempts much earlier. Figure 5 shows the overall
distribution of GET and POST requests across all honeypots. In accordance with the
measurements of Tables 1a and 1b, we observe similar distributions for GET requests,
but this accumulative distribution of requests further reveals that the discrepancy for
the POST requests, approximates two orders of magnitude. We note that for clients
who get a 404 error on the authentication endpoint, one would expect that the number
of POST requests be near zero, since there is no page to receive the POST requests.
Interestingly, we observed that that is not the case, revealing faulty application logic
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Table 2: Common bot appearances across FA and 404 honeypots
Appearances in IPs Only FA[%] Only 404 [%] Both[%]Different Honeypots

2-4 4,582 35.49 10.30 54.21
5-6 1,696 55.66 0.06 44.28
7-9 817 0 0 100
10-12 1,496 0 0 100

for a small fraction of the malicious bots that attacked our honeypots and kept on
sending POST requests, even after having knowledge that the login page was not there.
The tables breaking down the distribution of GET/POST requests just towards the
authentication endpoint are available in Tables 5a and 5b (in the Appendix).
Common bots across honeypots Since all 12 honeypots were in operation at the
same time, we can identify the specific bots that targeted more than one honeypot,
with a particular focus on the ones that targeted multiple honeypots across deception
types. In this way, we can compare the strategies of specific bots when encountering
our failed-authentication (FA) deception honeypots vs. the 404 ones.
In Table 2, we present the number of IP addresses that make requests to multiple

honeypots, along with the distribution of appearances towards only FA, only 404, or both
types of honeypots. As an example, we observe that there are 1,696 bots (characterized
by their unique IP addresses) which make requests towards 5 to 6 independent honeypots,
with 55.66 % of them directing traffic towards only FA honeypots, and 0.06 % directing
traffic only to 404 honeypots. Since we have six FA and six 404 deployed honeypots, bots
making requests to more than six honeypots are, by definition, reaching both types of
honeypots. This is also the reason behind the selection of presented ranges of honeypots.

Overall, from Table 2, we observe that there are significantly fewer bots that make
requests only towards 404 honeypots, compared to the ones making requests only
towards FA, or towards both honeypot types. This means that bot interaction with FA
or both types of honeypots can potentially result in a larger accumulation of bot traffic
around those honeypots. We suspect that bots visiting FA honeypots do not register
any abnormal behavior on the part of the web application (covert deception), while
bots that visit the 404 honeypots recognize the misbehavior of the login page (overt
deception) and, in some manner, flag the web application as non-conforming for future
reference. It is therefore likely that FA honeypots are added to databases of potentially
vulnerable websites that can be attacked again in the future, either by the same attacker
or by other attackers through data exchanging. Contrastingly, the non-conforming
behavior of PageKnocker’s HTTP 404 honeypots may be precluding them from lists
of potential targets and thereby attracting overall fewer unique attackers, compared to
the FA honeypots. Focusing on the bots (as identified by their IP addresses) that appear
in both types of honeypots, we present in Fig. 6 a scatter plot depicting the GET and
POST requests made from bots that visit all deployed honeypots. The vertical axis
represents the requests made to 404 honeypots, whereas the horizontal axis represents
the requests towards a failed-authentication (FA) honeypot. A data point above y=x
indicates that there are more requests to a 404 than a FA honeypot, while the opposite
is true for data points below that line. First, we observe the large accumulation of
GET requests at the region of fewer than 50 requests (for both the FA and the 404),
whereas the POST requests are concentrated along the horizontal axis. To extract
insights from this data, we provide the Linear Regressions (LRs) for both the GET
and POST requests. The LR curves demonstrate the following:



12 Billy Tsouvalas and Nick Nikiforakis

0 50 100 150 200 250
Requests in FA

0

50

100

150

200

250

Re
qu

es
ts

 in
 4

04

y=x
GET LR
POST LR
GET
POST

Fig. 6: GET and POST requests of common IPs in FA and 404 honeypots in the wild

– Since the slope of the GET-requests LR curve is relatively close to that of the y=x,
we can conclude that the GET requests between the FA and the 404 honeypots do not
present a significant difference. This is to be expected from our prior experimentation,
given that GET requests essentially represent reconnaissance or discovery attempts
by bots, which we do not interfere with our PageKnocker mechanism.

– On the other hand, the POST-requests LR curve is practically parallel to the hor-
izontal axis, meaning that the overwhelming majority of POST requests is directed
towards FA honeypots. This matches our previous results (see Fig. 5), where we
showed that the 404 deployments receive fewer POST requests than the FA ones,
to the difference of two orders of magnitude. Thus, we observe that this result holds
when considering common clients that appear in both FA and 404 honeypots.

We note that in Fig. 6 we also include nine IPs that demonstrate very large numbers of
POST requests, which fall outside the confines of the presented plot. This was a conscious
choice for ease of viewing, and we present these data points in Table 6 (Appendix). Taken
together, these observations show that, for the vast majority of bots, PageKnocker trig-
gered different paths of their attack logic. That is, given the deceptive “wrong-credentials”
message, bots keep sending POST requests with additional credentials. The same bots,
however, when encountering our 404-deception honeypots stopped attacking our honey-
pots. System administrators can therefore choose between different deception modes of
PageKnocker depending on whether they want bots to go away as fast as possible (404
deception) or keep them engaged in order to study them, without any danger of success-
fully authenticating to the targeted web application (failed-authentication deception).
Time-based Analysis of Requests In this section, we evaluate the behavior of bots
in terms of their successive requests towards our PageKnocker honeypots. As we
established in our prior analysis of GET and POST requests, bots employ GET requests
as part of their reconnaissance and proceed with POST requests when attempting to
brute-force the application’s authentication endpoints. Since PageKnocker disrupts
this sequence of events, we examine how the bots react to our mechanism in terms
of what requests they make. In Fig. 7, we present the distribution of request methods
(GET, POST) for the first 1,000 bot requests towards our FA and 404 honeypots. The
choice of the first 1,000 requests stems from the fact that clients making at least 1,000
requests approximate the totality of our dataset, as we show in Fig. 8 (Appendix).
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Fig. 7: Distribution of request methods in time for FA and 404 honeypots in the wild

In Fig. 7, we observe the average percentage of GET/POST requests to Page-
Knocker honeypots evaluated over the first 1,000 time-ordered requests. The horizontal
axis represents the time-ordered requests, which are made by all bots interacting with
the respective honeypots, meaning that a value of 200 on the horizontal axis represents
the 200th request that a bot makes. Thus, we observe that for FA honeypots, bots
begin their interaction with slighlty more GET requests, and after the 100th request,
on average, the POST requests have clearly surpassed the number GET requests. This
indicates that the bots have transitioned from reconnaissance to actual attack. This
POST-majority pattern continues for the better part of the first 1,000 requests, and
only presents a relatively small disparity, as we approach the last requests.
Regarding the 404 honeypots, we notice diametrically opposite results. The GET

requests represent the majority, being well above 80% of the total requests for the
first 200 requests. Furthermore, we notice that after initially attempting relatively few
POST requests, after the 400th request, both GET and POST requests drop to zero.
This reveals that the majority of bots are directed away from the application, with
just a few bots with faulty application logic attempting to send POST requests despite
not finding the actual authentication endpoints.

6 User Study
In Section 5 we evaluated PageKnocker’s ability to protect web applications against
non-targeted attacks by malicious bots. In this section, we report on a study involving
real users to understand i) whether they can defeat PageKnocker when they are told
about its existence (simulating attackers), and ii) their ability to choose, recall, and
use page knocks when interacting with a PageKnocker-protected web application
(simulating web application administrators).

6.1 Setup of study

In order to best approximate the roles for both scenarios (attackers and administrators),
we recruited 16 users from our computer science department (graduate students and
faculty) who work in the area of cyber security and are knowledgeable in the subject
of attacks and authentication. In contrast with the 22K unique bots that attacked our
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PageKnocker-protected honeypots in Section 5, in this user study we consciously
trade attack volume in favor of attacker sophistication.
The user study setting comprises of two parts addressing the aforementioned ob-

jectives. For the first part, the participants are introduced to the PageKnocker
mechanism and its functionality. Subsequently, the participants are asked to carry out
the two following tasks:
1. Each participant is directed towards a deployed web application that uses a predefined

page knocking sequence of a single request. Their task is to figure out the single
request, which is necessary to match the predefined sequence, and eventually log
in to the web application. The participants have 10 minutes to complete this task.

2. The second task is the same as the first, with the exception that the predefined
page knocking sequence contains three requests.

We note that for both tasks, the deployments are exactly the same as the in-the-wild
deployed honeypots, and the participant pool was equally split between FA and 404 login
environment implementations. The participants are also provided with correct login
credentials, which lead to a webpage informing them of a successful task completion.

For the second part of the user study, having knowledge of PageKnocker’s func-
tionality and first-hand experience of the implementation, the participants are asked
to create their own page knocking sequence. Once they submit their page knocks, they
are asked three times in the two subsequent weeks after their submission, to re-visit
the web application, and perform their page knock. We advised the participants to
act like legitimate users of the PageKnocker-protected web applications and consider
security as well as usability aspects in their selection of personal page knocks, based
on their theoretical understanding and empirical experience with the framework.

6.2 Ethical Considerations

After the review of our user-study protocol by our IRB, we were informed that there
was no requirement for approval or exemption, since we only collected the paths visited
in our deployed web applications which contain no private, user-specific information.
The participants were asked to volunteer, in the context of a security seminar, and
each of them was entered in two raffles for two $50 gift cards, contingent upon their
participation in the respective part of the user study.

6.3 Results

Regarding the first part of the user study, out of the 16 participants, only a single one man-
aged to break the PageKnocker-authentication for the single-request instance, while
none were able to break the three request sequence instance. This clearly demonstrates
that, even though attackers may be able to brute-force their way through extremely
short page knocking sequences, correctly guessing longer sequences is far from trivial.
In Table 3, we present the results of the second part of our user study. As a user

identifier, we use an arbitrary index number, and for each user, we provide four metrics:
the completion results of their personally submitted page knocking sequence upon
their three returns in the two subsequent weeks, and the respective lengths of the
freely-chosen, page knocking sequences. Two of the participants (Users #10 and #11)
did not return for the page knock recall part of the study, while another two (Users #8
and #9) returned only once. We note that for the latter case (Users #8 and #9), their
returns, although not completed fully, were successful, indicating that the users correctly
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Table 3: User Study Usability Results

remembered and reproduced their page knocks at least once. Out of the 12 participants
that completed the return study in its entirety, 11 (91.67%) of them consistently
completed their page knocks correctly for all three return days. The one participant
who did not (User #1) never managed to complete their page knocks correctly.

Regarding the choice of page knocks by the participants, we observe the majority opted
for page knocking sequences of length three and four. All but one of the participants
who participated in the second part of the study, managed to consistently reproduce
their page knocks correctly. Given that the overwhelming majority of users managed
to correctly remember and reproduce their page knocks, and considering that all users
submitted longer page knocks, we attribute the failure of User #1 to potentially initial
confusion upon submission of the personalized sequence. We note that this user still
managed to reproduce half of their sequence in all return days.
From the two parts of the user study, we make the following observations:
– First, PageKnocker is resistant against expert users that have knowledge of its

existence and its functionality. We experimentally confirm that longer page knocks
are more secure, even if these are just 3 link clicks on a web application’s UI.

– Observing the choices of page knocking sequence lengths, the vast majority of users rec-
ognize the necessary sequence length threshold to be between three and four requests.

– Lastly, we showed that PageKnocker exhibits high usability, since the participants
remembered their knocks consistently.

7 Limitations

Given the ever-increasing sophistication of cyber attacks, PageKnocker is not a silver
bullet against all possible authentication attacks. That is, while PageKnocker can
protect web applications against credential brute-forcing, guessed/reused passwords, and
traditional phishing, it cannot defend against the MITM phishing kits where attackers
can observe all traffic from a user’s browser and replay it (i.e. clicks, typed credentials,
MFA codes, etc.) to the victim web application [19]. Like with any real-world defense
mechanism, PageKnocker would have to be layered alongside other countermeasures
(i.e., anomaly detection systems), to defend users against these types of attacks.
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An attacker that has knowledge of the presence and functionality of PageKnocker,
could attempt a brute-forcing strategy to find the correct page-knocking sequence. Such a
strategy would consist of performing arbitrary page knocks and subsequently visiting the
login page, to evaluate each page knocking sequence. Excluding the fact that such a brute
force attack can only be carried out against the 404 deceptive configuration, where the
attacker can evaluate the correctness of each attempted page knocking sequence based
on the response of the web application (404, or login page), such back-and-forth actions
would need to be carried out repeatedly, potentially hundreds of thousands of times.
The repetitive nature of this attack (page knock paths to login page loop) constitutes
an extremely distinct client behavior, which could easily be detected by the server.

Although adapting PageKnocker to protect existing web applications is a relatively
uncomplicated procedure, as described in Section 3.2, the different in-page structures
and a web application’s content-update frequency, could have an impact on the efficacy
of the system (i.e. a regularly updated blog or a news website with many of the webpage
paths changing often). To counterbalance this, we note that PageKnocker can still
protect the authentication of such web applications, using a smaller subset of the
webpage’s sitemap; i.e. the pages that do not change.

8 Related Work

Deception-based Defenses The field of deception-based defenses comprises of all
security techniques aiming to protect digital elements through redirection, diversion, or
the deflection of attacks, by deceiving the perpetrator. In this context, honeypots have
been integrally linked with deceptive security, providing the aforementioned qualities,
while also allowing further analysis of an attacker’s behavior by monitoring and tracking
intruders. Although the deceptive defenses predate them [20], honeypots as virtual
entities attracting and engaging attackers have been on the forefront of network and web
security for the better part of the last 20 years [20,21]. In order to tackle diverse security
issues, the concept of honeypots has been extended to analogous elements, such as hon-
eypot networks (also known as honeynets) [22], honeytokens [23], honeywords [24], and
decoy documents and files [25,26,27,28], overall characterized as honey-x entities. Such
honey-x approaches have been employed in different security applications, from intrusion
and malware detection [25,29,30], to software and web application defenses [31,32,33,34].
Introducing believable and attractive decoy and bait elements in the system enhances
the detection capability, while the different deployments and characteristics of trap-based
architectures allow for ad hoc deceptive defenses addressing various attacks [30,35,26,36].

Deception&WebApplications In the context of web applications and web servers,
deception-based approaches have focused on augmenting the attack surface of the web
application by introducing deceptive elements. This concept is founded on the idea
of using deceptive elements as detection points, where any interaction with them is
labelled suspicious. More specifically, strategies such as providing falsified system version
information, tampering with robots.txt files, generating virtual honey documents, cookie
scrambling, and Javascript obfuscation have been attempted [37,38]. Furthermore,
approaches generating decoy files in lieu of tripwires deployed on real systems have
proven effective for intruder detection, while achieving low rates of false positives [27,26].
On the other hand, deceptive techniques have also been employed in a parallel world
context, where the attackers are covertly redirected to an isolated and appropriately
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curated clone of the original environment after detection [33,39,40]. Thus, the attacker
is under the impression that they are still attacking the real system, while the defender
is able to observe the attacker’s behavior, without the risk of lateral movements or
exposure of critical resources. While PageKnocker’s main objective is to protect the
authentication endpoint, it also serves as a detection mechanism, and may be employed
as a trigger for a parallel world setting.

Regarding the authentication itself, in order to alleviate the inadequacies of password-
based web authentication, deception-based approaches, such as login rituals and web
tripwires have been suggested as supplementary authentication mechanisms [41]. In the
case of login rituals, users are considered “truly” authenticated by performing specific
actions post credential-based authentication, e.g., interact with specific elements of
the web application. Tripwires are elements that authenticated users must avoid to
remain authenticated. PageKnocker also uses web-application elements as deception
primitives but brings these to pre-authenticated users. In this way, we can protect web
applications from tens of thousands of would-be attackers (Section 5) before they even
reach the login page. Provided the improved defensive posture afforded by both overt
and covert deceptive defenses [42], PageKnocker employs two deceptive environments;
one manifestly deceptive and one clandestine.

9 Conclusion

In this paper we introduced PageKnocker, a deception-based supplementary web
authentication mechanism on top of passwords that can protect public-facing authentica-
tion endpoints from attackers. Inspired by the concept of port knocking, PageKnocker
checks the requests that a user makes towards the web application against a predefined
user-specific sequence of requests. The user is authenticated and allowed to reach the
login page only if the sequence of requests they make matches their predefined sequence.
The objective of this supplementary authentication scheme is to protect the login page of
web applications, while allowing the administrators to detect attackers before they reach
the credential-based authentication. Utilizing this a priori knowledge on the nature of
the visitor, we construct two different deceptive login environments, towards which we
direct the unauthenticated attacker; the first directs the user to a fake login page, while
the second directs them to an HTTP 404 error. We evaluate the security and usability of
PageKnocker using both in-the-wild experiments with honeypots as well as via a user
study. From these experiments, we conclude that PageKnocker manages to effectively
protect the main authentication of the web application, while being user-friendly. Further-
more, we demonstrated that overt placement of deceptive elements leads to bot traffic
disengaging quicker, while concealing such elements encourages further bot interaction.
Acknowledgements We thank the anonymous reviewers for their helpful feedback.
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Availability. A video demonstration of PageKnocker along with source code are
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A
Table 4: Predefined login page paths for top 10 CMS web applications by market share [43]

CMS Predefined Login Path Market Share [%]
Wordpress /wp-admin, /wp-login.php 63.6
Joomla /administrator, /administrator/index.php 2.7
Drupal ?q=user/login, landing page 1.8

PrestaShop /admin 1
Magento /admin 0.9
TYPO3 /typo3 0.6
Craft /admin/login 0.2
Ghost /ghost, /ghost/#/signin 0.1
Contao /contao, /contao/login 0.1

ProcessWire /processwire 0.1

Table 5: Requests received to the login page
Page Knock Total GET [%] POST [%]Length

1 131,596 10.33 89.67
1 182,182 11.41 88.59
3 133,201 16.21 83.79
3 94,108 17.93 82.07
5 95,857 16.85 83.15
5 124,965 15.31 84.69

Overall 761,909 14.67 85.33

(a) Requests to the login page of FA honeypots

Page Knock Total GET [%] POST [%]Length
1 5,056 43.73 56.27
1 4,542 49.43 50.57
3 4,602 49.35 50.65
3 4,546 48.88 51.12
5 5,409 42.91 57.09
5 4,477 49.16 50.84

Overall 28,632 47.24 52.76

(b) Requests to the login page of 404 honeypots

Table 6: Common IPs appearing in both FA and 404 honeypots making large amounts of
POST requests IP Requests GET POST Country

20.83.147.x 168,604 48 168,556 United States
79.110.62.x 16,248 519 15,729 Switzerland
31.14.75.x 10,280 144 10,136 Czech Republic
81.161.229.x 9,648 126 9,522 United States
20.162.210.x 6,132 126 6,006 United States
89.187.163.x 5,040 72 4,968 Turkey
185.207.35.x 3,572 84 3,488 United States
89.187.163.x 2,689 72 2,617 Germany
20.166.249.x 1,927 84 1,843 Czech Republic
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Fig. 8: CDF of requests per number of requests FA and 404 honeypots in the wild
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